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Abstract
The method of logical relations is a classic technique for proving
the equivalence of higher-order programs that implement the same
observable behavior but employ different internal data representa-
tions. Although it was originally studied for pure, strongly normal-
izing languages like System F, it has been extended over the past
two decades to reason about increasingly realistic languages. In
particular, Appel and McAllester’s idea of step-indexing has been
used recently to develop syntactic Kripke logical relations for ML-
like languages that mix functional and imperative forms of data ab-
straction. However, while step-indexed models are powerful tools,
reasoning with them directly is quite painful, as one is forced to en-
gage in tedious step-index arithmetic to derive even simple results.

In this paper, we propose a logic LADR for equational reasoning
about higher-order programs in the presence of existential type ab-
straction, general recursive types, and higher-order mutable state.
LADR exhibits a novel synthesis of features from Plotkin-Abadi
logic, Gödel-Löb logic, S4 modal logic, and relational separation
logic. Our model of LADR is based on Ahmed, Dreyer, and Ross-
berg’s state-of-the-art step-indexed Kripke logical relation, which
was designed to facilitate proofs of representation independence
for “state-dependent” ADTs. LADR enables one to express such
proofs at a much higher level, without counting steps or reasoning
about the subtle, step-stratified construction of possible worlds.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features—Abstract data
types; F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

General Terms Languages, Theory, Verification

Keywords Abstract data types, step-indexed logical relations,
modal logic, separation logic, Plotkin-Abadi logic, local state

1. Introduction
The method of logical relations is a classic technique for proving
the equivalence of higher-order programs that implement the same
observable behavior but employ different internal data representa-
tions. The basic idea is to lift the notion of observable equivalence
at base type to one at higher type by defining a notion of “logi-
cal equivalence” inductively on the type structure of the language.
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The Curry-Howard isomorphism dictates which logical connective
to use in assigning a relational operation to each type constructor.

Since Reynolds’ seminal paper on relational parametricity [37],
which presented logical relations for reasoning about the pure,
strongly normalizing System F, there has been a lot of work on gen-
eralizing and extending the method to handle increasingly realistic
languages [1, 8, 10, 23, 30, 31]. In particular, Ahmed, Dreyer, and
Rossberg (hereafter, ADR) have recently developed a powerful log-
ical relation for an ML-like language with universal and existential
types, general recursive types, and higher-order mutable state [2].

The ADR logical relation is notable in two ways. First, it is a
Kripke logical relation, which means that the relation is parame-
terized by possible worlds. These in turn allow for the encoding
of invariants on local state, that is, mutable state that is accessible
to the terms being logically related but not publicly accessible to
“the rest of the program”. For instance, two functions might be dis-
tinguishable in an arbitrary program context, but equivalent under
the assumption that (i.e., in a possible world that demands that) a
particular local reference cell always stores, say, an even number.

Compared to previous Kripke logical relations for reasoning
about state, the most interesting and novel aspect of ADR’s possible
worlds is that they allow one to establish not only invariants, but
also properties about local state that evolve over time. ADR achieve
this by instrumenting possible worlds with populations, which may
be used to effectively encode an abstract trace of the program. As
we will review in Section 3, populations are very useful when
proving representation independence for “generative” or “state-
dependent” ADTs, i.e., ADTs whose inhabitants grow over time
in correspondence with changes to some local state.

A second key aspect of the ADR logical relation is its use of
Appel and McAllester’s step-indexing technique [3]. Step-indexing
is useful as a way of modeling language features like recursive
types and higher-order state, whose relational interpretations are
not inductive on the structure of types. The idea is to index the
logical relation by a second induction metric, namely a natural
number representing (roughly) the number of steps of computation
for which the terms in question are indistinguishable. (Thus, if
two terms are related for an arbitrary “step-index”, we know they
are really indistinguishable.) In addition to stratifying the logical
relation, step-indexing is also helpful in stratifying possible worlds,
which in the presence of higher-order state may be self-referential.

For the purpose of constructing logical relations for recursive
types and higher-order state, step-indexing is not the only technique
available. A variety of denotational techniques—minimal invari-
ance [32], FM-cpos [8], ultrametric spaces [10]—have been and are
being developed for this purpose as well. But the promise of step-
indexing is that it is readily applicable in a variety of settings—e.g.,
both in ML-like languages and low-level code [4]—and, moreover,
that it is conceptually and mathematically elementary.

Unfortunately, step-indexed models are so elementary that they
can be quite painful to use directly. Unlike the abovementioned de-
notational models, which involve some heavy mathematical con-
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structions but in the end produce fairly clean equational reason-
ing principles, step-indexed logical relations force their users to
engage in tedious step-index arithmetic to derive even simple re-
sults. The crux of the problem is that you get what you pay for:
step-indexed models are fairly straightforward to construct because
one doesn’t have to prove anything about limits of chains of finite
approximations of a relation—the model consists only of the finite
approximations—but, as a result, the user of the model has to rea-
son directly about the finite approximations as well.

For instance, one might hope to prove that two functions f1

and f2 are logically equivalent by showing that they map logically
equivalent arguments to logically equivalent results. However, in a
step-indexed logical relation, this proof principle does not hold.

Why? First, it is difficult to prove anything about logical equiv-
alence directly because step-indexed logical relations are (for var-
ious technical reasons [1]) typically asymmetric, i.e., they define
approximation relations between terms. One can of course define
logical equivalence to mean mutual approximation, but unfortu-
nately that notion of equivalence does not enjoy the extensionality
proof principle described above. In particular, showing that f1 and
f2 map mutually-approximate arguments to mutually-approximate
results does not imply that f1 and f2 are themselves mutually-
approximate. Indeed, to show the latter, one must demonstrate that
if v1 approximates v2, then f1v1 approximates f2v2, and if v2 ap-
proximates v1, then f2v2 approximates f1v1. Thus, one must ef-
fectively divide the proof of f1 and f2’s equivalence into two, often
very similar, proofs—one for each direction of approximation.

Second, when showing that f1 and f2 are logically related (for
either direction of approximation), it does not suffice to show that
f1 and f2 map arguments that are logically related for all steps to
results that are logically related for all steps. One must show the
stronger condition that, for any n ∈ N, if v1 and v2 are logically
related for n steps, then f1(v1) and f2(v2) are logically related for
n steps as well. The step-stratified possible worlds that arise in a
model like ADR only make matters worse by requiring additional
quantification over future worlds throughout the proof.

Hopefully, this example suggests the pressing need to develop
more abstract, high-level, step-free, equational proof principles for
step-indexed Kripke logical relations.

1.1 Existing Work on Reasoning About Step-Indexed Models
Aside from the asymmetry of step-indexed binary relations, most of
the issues discussed above also arise in unary step-indexed models.

To address them in that setting, Appel, Melliès, Richards, and
Vouillon [4] have proposed the use of a modal logic with an ap-
proximation modality . (pronounced “later”) [25]. Essentially, one
can view step-indices as a form of possible worlds, with smaller
indices representing future worlds. Proposition P holds in world k
if it holds (intuitively) for k steps of computation, and .P holds
in world k if P holds, “one step later”, in world k − 1. This in-
terpretation validates the Löb rule derived from Gödel-Löb logic,
(.P ⇒ P ) ⇒ P , which provides a clean induction principle
over step indices. In subsequent work, Hobor, Appel, et al. [15, 18]
extend the . logic with other modalities, as well as the separat-
ing conjunction P ∗ Q from separation logic [38], which they use
for proving the semantic soundness of Concurrent Cminor in Coq.
They describe multimodal separation logic as transforming their
step-indexed proof effort “from infeasible to feasible”.

More recently, Appel et al.’s approximation modality . has been
used to reason about relational step-indexed models.

Benton and Tabareau [9] prove correctness of a compiler for a
simply-typed functional language, using a step-indexed model that
interprets source-language types in terms of relations on low-level
programs. Their proof exploits both the . operator and separating
conjunction [44] in order to modularize the relational constructions.

Dreyer, Ahmed, and Birkedal [16] propose LSLR, a logic for
reasoning abstractly about Ahmed’s step-indexed logical relations
for pure call-by-value System F with recursive types [1]. The basic
idea of LSLR is to incorporate the approximation modality . into
a variant of Plotkin and Abadi’s relational logic for parametric
polymorphism [33]. Plotkin-Abadi logic provides a clean way of
encoding logical relations for second-order polymorphism in terms
of quantification over second-order relation variables (which are
primitive in the logic). Extending it with the . modality enables a
simple well-founded mechanism for recursively defined relations
µr.R, with which one can then define a logical relation for general
recursive types quite elegantly. Furthermore, Dreyer et al. derive a
set of proof principles for direct equational reasoning by treating
the direction of the step-indexed logical approximation relation as
a “hidden” parameter of the LSLR judgment.

1.2 A Logic for Step-Indexed Kripke Logical Relations
In this paper, we develop LADR, a modal logic for reasoning about
(a slight variant of) the ADR logical relation. Using LADR, we can
express ADR-style contextual equivalence proofs at a much higher
level of abstraction, avoiding low-level details about steps and
possible worlds. LADR extends LSLR with a variety of features,
most notably: (1) an abstract, logical characterization of ADR’s
possible worlds and populations, (2) the 2 modality from S4 modal
logic, and (3) a simple fragment of relational separation logic [44].
In the remainder of this section, we motivate these extensions.

Local Reasoning About Islands Kripke logical relations in the
tradition of Pitts and Stark [31], of which ADR is one, employ pos-
sible worlds that are essentially sets of islands—relational proper-
ties concerning disjoint pieces of the heap. When we prove two
terms related under a particular world, we typically only know
about some small (often singleton) set of islands that exist in that
world, which in turn concern some piece(s) of local state that the
terms have references to. However, due to the quantifications over
future worlds that arise in the proof of logical relatedness, the world
in question may contain arbitrary other islands. Fortunately, we can
safely ignore those other islands in the proof—because they are
guaranteed to only place restrictions on other separate pieces of the
heap that our terms do not directly touch or care about—but, when
working directly with the model, we still have to mindlessly push
the other islands around.

In LADR, to avoid such tedium, we instrument our judgments
with a context describing what islands must exist in the current
world, without placing any restrictions on what other islands may
exist. This allows us to avoid reasoning explicitly about possible
worlds. Rather, it enables us to reason locally about only the islands
we care about, yet be assured that our results hold in the presence
of arbitrary invariants concerning other pieces of the heap.

Modeling Populations As mentioned above, one of the key ad-
vances of ADR is that islands contain populations, which may grow
in future worlds. These populations may then be used to define rela-
tional interpretations of abstract types that are dynamic, in the sense
that they absorb more and more inhabitants over the execution of
the program. In order to support the encoding of such dynamic re-
lations in LADR, we equip each island in the island context with a
population variable p. This p is a primitive dynamic relation repre-
senting the island’s ever-growing population, which may be used as
a basic building block in the definition of other dynamic relations.
Population variables are sufficient to account for LADR’s lack of
explicit worlds, since the population of an island is the central as-
pect of the island that is dynamic, i.e., changes in future worlds.
(The heap property of an island changes as well, but the way it
changes is completely determined by how the population changes.)
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Term & Type Environments Γ ::= · | Γ, α | Γ, x:τ
Heap Environments Σ ::= · | Σ, l:τ
Base Types
τb ::= unit | int | bool

Types
τ ::= α | τb | τ1 × τ2 | τ1 + τ2 | τ1 → τ2 |

∀α. τ | ∃α. τ | µα. τ | ref τ
Expressions
e ::= x | 〈〉 | l | n | e1 = e2 | e1 ≤ e2 | e1 + e2 | . . . |

true | false | if e then e1 else e2 |
〈e1, e2〉 | fst e | snd e |
inl e | inr e | case e of inlx1 ⇒ e1 | inr x2 ⇒ e2 |
λx : τ. e | e1 e2 | Λα. e | e τ |
pack τ1, e as ∃α. τ | unpack e1 asα, x in e2 |
roll e | unroll e | ref e | !e | e1 := e2 | e1 == e2

Values
v ::= 〈〉 | l | n | true | false | 〈v1, v2〉 | inl v | inr v |

λx : τ. e | Λα. e | pack τ1, v as ∃α. τ | roll v

Figure 1. Syntax of Fµ!

Monotonicity and the 2 Modality A key notion in Kripke models
is world extension, aka the accessibility relation between worlds.
In ADR, there are three ways in which a future world W2 can
extend a starting world W1: time extension, width extension, and
depth extension. Time extension means that W2’s step-index may
be smaller than W1’s. Width extension means that W2 may contain
more islands than W1. Depth extension means that the population
of an island in W2 may be larger than the population of the same
island (if it exists) in W1.

When reasoning about logical relations, it seems that all the
propositions we are interested in are monotone with respect to
time and width extension, so we build those forms of monotonicity
into our model of LADR. However, some propositions of interest
are not monotone with respect to depth extension. In particular,
in order to reason about extending the population of an island,
we need to have a way of characterizing precisely what is in the
population currently, even though the population may grow to
contain more elements in future worlds. Thus, we do not build
depth monotonicity into our model, but rather represent it explicitly
using the necessity operator 2 from S4 modal logic. That is, if a
proposition P holds in world W , it must hold in all future worlds
that extend W by time and width, but not depth. If 2P holds in
world W , then it must hold in all future worlds of W , period.

Encoding Heap Relations in Relational Separation Logic Ul-
timately, the main goal of islands is to encode relations between
the heaps of the two programs being logically related. In LADR,
we express these heap relations using an intuitionistic fragment of
Yang’s relational separation logic [44]. Separation logic was de-
veloped by Reynolds, O’Hearn, and others as a way of generaliz-
ing Hoare logic to account for local reasoning about shared muta-
ble data structures [38]. Yang’s relational version, which is closely
related to Benton’s relational Hoare logic [7], allows for Hoare-
style reasoning about the equivalence of two pointer programs us-
ing Hoare quadruples. For our purposes, when proving that two
terms are logically related, relational separation logic is useful as
a way of reasoning cleanly about their execution in related heaps.
Furthermore, the separating conjunction ∗ is useful for joining the
heap relations of multiple islands together into a single relation.

2. The Programming Language
The programming language we will be reasoning about is Fµ!,
whose syntax is given in Figure 1.

Fµ! is a completely standard polymorphic λ-calculus, extended
with primitive support for product, sum, existential, recursive, and
ML-style reference types. Equality testing for base types τb is
written e1 = e2, whereas pointer equality is written e1==e2.
Fµ! has a standard left-to-right call-by-value operational semantics
(not shown here), specified in the style of Felleisen and Hieb, with
E denoting an evaluation context. It is easy to define a notion of
contextual equivalence for Fµ!, written Γ;Σ ` e1 ≈ctx e2 : τ ,
which asserts that e1 and e2 co-terminate when placed in any
closing Fµ! context of the appropriate type. For space reasons, we
refer the reader to the online appendix for further details [17].

3. Key Features of the ADR Logical Relation
In this section, we review the key features of the ADR logical
relation, and briefly sketch how we support them in LADR.

3.1 The Method of Populations
Consider the “twin abstraction” example (from ADR), in which we
want to prove the programs e1 and e2 contextually equivalent:

τ = ∃α, β. (unit→ α)× (unit→ β)× (α× β → bool)
C = let x = ref 0 in

pack int, int, 〈λ .++x, λ .++x, λy.[•]〉 as τ
e1 = C[fst y = snd y]
e2 = C[false]

Both e1 and e2 implement an ADT for a simple symbol generator.
Internally, they both represent symbols as integers, and create new
symbols via a local integer pointer x. The first two functions they
export generate symbols of abstract type α and β, respectively.
The two functions are implemented in the same way, by bumping
up the counter (++x is short for (x := x+1; !x)) and returning
the current value as a “fresh” symbol. The third function tests
whether a symbol of type α and a symbol of type β are equal.
In e1’s implementation, there is an integer equality test, but e2’s
implementation always returns false.

Intuitively, the reason e1 and e2 are equivalent is that, whenever
a new symbol is generated, it either becomes a value of type α or
of type β, but not both. Thus, an equality test between values of
type α and β must always fail. However, formalizing this intuition
is tricky: when proving the implementations equivalent, what are
the right relational interpretations to choose for α and β? Since
we don’t know ahead of time which integers will become α’s and
which will become β’s, how can we characterize up front what it
means to inhabit α vs. β?

The ADR logical relation solves this problem by introducing
populations into its model of possible worlds. The basic idea is
as follows: When we allocate a fresh piece of local state, we get
to extend the current world with a new island governing how that
state is maintained. In ADR, the island may contain a population
(formalized as a value relation), which can grow in future worlds
and be used to track some knowledge about the history of the
local state. The island also contains a law, specifying (1) what
populations are legally valid, and (2) what relational properties the
local state must satisfy depending on what the population is.

For the twin abstraction example, the island governing the local
counter x would include an (initially empty) population tracking
(1) how many symbols have been generated so far and (2) which
of those symbols are α’s vs. β’s. Formally, this can be encoded as
the relational map of some total function from {1, . . . , n} to {1, 2}
(for some n). The law of the island would demand that, whenever
the size of the population relation is n, the island’s heap relation
asserts that x points to n in both programs.

Finally, we can now define relational interpretations for α and
β that are dependent on the population of the island governing x.
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Specifically, we can say that v1 and v2 are related at α under world
W if there exists a positive integer n such that v1 = v2 = n
and (n, 1) is a member of the population of the island governing x
in W . Similarly, they are related at β if (n, 2) is in the population.
Note that, by this definition, there is no way v1 and v2 can be related
both at α and β (in the same world W ), which is what we needed
to establish in order to prove the equivalence of e1 and e2. Note
also that the interpretations of α and β are examples of what we
described in the Introduction as dynamic relations, i.e., they grow
in future worlds in accordance with changes to some local state.

In LADR, to express relations (like those for α and β) that de-
pend on the current population of an island, we employ population
variables. As described in the Introduction, we attach a population
variable p to every island bound in the island context of our logical
judgment. Terms e1 and e2 are related by p in world W iff (e1, e2)
is in the population of the island corresponding to p in W . Re-
turning to the twin abstraction example, assuming p is the variable
corresponding to the island governing the counter x, we can define
the relation for α in LADR as (x1, x2). x1 = x2 ∧ (x1, 1) ∈ p,
and the relation for β as (x1, x2). x1 = x2 ∧ (x1, 2) ∈ p. Thus,
we avoid ever talking explicitly about the world W .

3.2 Step-Stratified Worlds for Higher-Order State
When are two values v1 and v2 logically related at the type ref τ?
Intuitively, the answer is: when they are memory locations l1 and l2
whose contents are currently logically related at type τ and, more-
over, will continue to be related at type τ in the future. This strong
condition on l1 and l2’s contents is necessary in order to ensure
that dereferencing and assignment preserve logical relatedness. The
condition is also easy to express using an island. In particular, ADR
define l1 and l2 to be logically related at ref τ in world W if W con-
tains an island with a heap invariant ensuring that the contents of
those locations are logically related at type τ .

Now, in order for a heap invariant to specify that the contents
of l1 and l2 are logically related at type τ , it must also specify
the world in which that relation is considered. (If our language
only supported first-order state, and τ were restricted to be a base
type like int, the world would be irrelevant, but in the presence
of higher-order state, the world matters.) Ideally, we would choose
it to be whatever is the “current” world. However, since the “cur-
rent” world changes all the time (as the world is extended), ADR
instead parameterize heap relations over the world in which they
are considered. Then, when checking whether two heaps satisfy
the demands of a world W , the heap relation in each island of W
is instantiated to the current world (namely, W ).

Unfortunately, it’s not quite that “simple”. It is easy to see
by a simple cardinality argument that we cannot construct worlds
that contain heap relations parameterized by worlds. This is where
step-indexing comes in. ADR stratify worlds by a step-index, so
that the heap relations in k-indexed worlds are parameterized by
(k − 1)-indexed worlds. This is sufficient for encoding the logical
relation at type ref τ (as described above) because it takes a step of
computation to observe the contents of l1 and l2, and so we only
need to know their contents are logically related “one step later”.

In LADR, much of this technical detail is kept hidden away
from the user of the logic and buried in the model. The heap rela-
tions that appear in LADR islands are not explicitly parameterized
over worlds because the logic does not talk about worlds explic-
itly at all. To express logically the restriction that an island heap
relation H can only talk about logical relatedness of heap contents
“one step later”, we require syntactically that H be what we call
delayed. This means essentially that any world-dependent proposi-
tions contained within H (such as logical relatedness at an arbitrary
higher type τ ) must appear under the “later” modality (.).

Absolute Relation Variables a, b ∈ AbsRelVar
Normal Relation Variables p, q, r, s ∈ RelVar
Variable Contexts X ::= · | X , α | X , x
Relation Contexts R ::= · | R, a | R, p
Island Contexts L ::= · | L, p∝ a.(B,H)
Hypothesis Contexts P ::= · | P, P
Joint Contexts C ::= X ;R;L;P

Absolute Relations
A,B ::= e1 = e2 | e1 ;0 e2 | e1 ;1 e2 | e1 ;∗ e2 |

> | ⊥ | A ∧B | A ∨B | A⇒ B | ∀X .A | ∃X .A |
∀R.A | ∃R.A | e ∈ A | a | x.A | Val | Constτb | Loc

Normal Relations
P,Q, ::= A | P ∧Q | P ∨Q | P ⇒ Q | ∀X .P | ∃X .P |
R,S ∀R.P | ∃R.P | ∝ a.(B,H) | .P | 2P | e ∈ R | r |

x.P | µr.R | ↑R | Termi | H V J

Heap Relations
H, J ::= e1 ↪→i e2 | H ∗ J | H ∨ J | ∃X .H | 2P

Figure 2. Syntax of LADR

Vali
def
= x. x ∈ Termi ∧ x ∈ Val

R : VRel
def
= 2(∀x1, x2. (x1, x2) ∈ R⇒ x1 ∈ Val1 ∧ x2 ∈ Val2)

R : Type
def
= R : VRel ∧

2(∀x1, x2. (x1, x2) ∈ R⇒ 2(x1, x2) ∈ R)

(x1 ∈ R1, x2 ∈ R2).P
def
= (x1, x2). x1 ∈ R1 ∧ x2 ∈ R2 ∧ P

†(X ;R;L;P )
def
= X ;R;L; †P

†(2P )
def
= 2P

†P def
= > (if P 6= 2P ′)

/(X ;R;L;P )
def
= X ;R;L; /P

/(.P )
def
= P

/P
def
= P (if P 6= .P ′)

∗ ε def
= 2>

∗H,H def
= H ∗ (∗H)

V
ε

def
= >V

P, P
def
= P ∧ (

V
P )

Figure 3. Auxiliary Notation for the Logic

4. LADR: Syntax
The syntax of our logic LADR is given in Figure 2.

LADR is a relational second-order intuitionistic modal logic,
supporting relations of arbitrary arity. Propositions are just nullary
relations. While P , Q, R, and S may denote any kind of relation,
we will typically use P and Q to represent propositions, and R and
S to represent binary relations. Absolute relations A and B are a
useful syntactic subcategory of relations; such relations are “abso-
lute” in the sense that their meaning essentially does not depend
on the world in which they are considered. We say “essentially”
because we consider everything to be true in a trivial world (i.e.,
world with step index 0). Thus, an absolute proposition A is true in
any non-trivial world iff A is true in all non-trivial worlds.

Most of the atomic relations in LADR are absolute. e1 = e2

denotes syntactic equality. e1 ;∗ e2 says that e1 reduces to e2 in
an arbitrary number of pure (non-heap-dependent) reduction steps.
e1 ;0 e2 says that e1 ;∗ e2 without making any unroll-roll
reductions. e1 ;1 e2 says that e1 ;∗ e2, making exactly one
unroll-roll reduction. These latter two propositions are borrowed
from LSLR [16]; the distinction they make between unroll-roll and
other reductions is useful because our logical relation for terms
(defined below in Section 5) is closed under β-reduction and other
forms of pure reduction, but not under unroll-roll reduction.

A term e is in Val if e is a value, in Constτb if e is a constant of
base type τb, and in Loc if e is a memory location l. The predicate
Termi describes terms whose free locations are bound in the heap
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VJαKρ def
= ρ(α)

VJτbKρ
def
= (x1 ∈ Constτb , x2 ∈ Constτb ). x1 = x2

VJτ ′ × τ ′′Kρ def
= (x1 ∈ Val1, x2 ∈ Val2). ∃x′1, x′′1 , x′2, x′′2 . x1 = 〈x′1, x′′1 〉 ∧ x2 = 〈x′2, x′′2 〉 ∧ (x′1, x

′
2) ∈ VJτ ′Kρ ∧ (x′′1 , x

′′
2 ) ∈ VJτ ′′Kρ

VJτ ′ + τ ′′Kρ def
= (x1 ∈ Val1, x2 ∈ Val2). (∃x′1, x′2. x1 = inlx′1 ∧ x2 = inlx′2 ∧ (x′1, x

′
2) ∈ VJτ ′Kρ) ∨

(∃x′′1 , x′′2 . x1 = inr x′′1 ∧ x2 = inr x′′2 ∧ (x′′1 , x
′′
2 ) ∈ VJτ ′′Kρ)

VJτ ′ → τ ′′Kρ def
= (x1 ∈ Val1, x2 ∈ Val2). 2(∀y1, y2. (y1, y2) ∈ VJτ ′Kρ⇒ (x1 y1, x2 y2) ∈ EJτ ′′Kρ)

VJ∀α. τKρ def
= (x1 ∈ Val1, x2 ∈ Val2). 2(∀α1, α2. ∀r. r : Type⇒ (x1 α1, x2 α2) ∈ EJτKρ, α 7→r)

VJ∃α. τKρ def
= (x1 ∈ Val1, x2 ∈ Val2). ∃α1, α2, α′1, α

′
2. ∃y1, y2. ∃r. r : Type ∧

x1 = packα1, y1 asα′1 ∧ x2 = packα2, y2 asα′2 ∧ (y1, y2) ∈ VJτKρ, α 7→r
VJµα. τKρ def

= µr. (x1 ∈ Val1, x2 ∈ Val2). ∃y1, y2. x1 = roll y1 ∧ x2 = roll y2 ∧ .(y1, y2) ∈ VJτKρ, α 7→r
VJref τKρ def

= (x1 ∈ Val1, x2 ∈ Val2). ∝ a.(a ≡ {(x1, x2)}, ∃y1, y2. x1 ↪→1 y1 ∗ x2 ↪→2 y2 ∗ 2.(y1, y2) ∈ VJτKρ)
EJτKρ def

= ↑VJτKρ

Figure 4. Syntactic Logical Relation for Fµ!

for program i (where i ranges over {1, 2} with 1 representing the
program on the “left” and 2 representing the program on the “right”
of the logical relation). As new locations can get allocated during
the execution of the programs (and thus in future worlds), Termi

is not an absolute relation. We write Vali to denote Termi ∩Val.
Truth, falsehood, conjunction, disjunction, and implication are

all standard. The first-order ∀X .P and ∃X .P quantify over vari-
able contexts X , which bind type variables α, β and term variables
x, y (which may or may not be values). The second-order ∀R.P
and ∃R.P quantify over relation contexts R, which bind normal
and absolute relation variables (p, q, r, s and a, b, respectively).

In the sequel, we use ≡ and ⊆ to denote relational equivalence
and inclusion, defined logically in the obvious way. We also use
set notation (e.g., {}, ∪, ∩) as shorthand for the corresponding
LADR relations and relational operations, all defined logically in
the obvious way.

The proposition ∝ a.(B, H) asserts that in the current world
there is an island with population law B and heap law H , where
the absolute relation variable a is bound in both B and H . Given
a population (represented by a), the population law says whether
a is a valid population for the island (i.e., A is valid if B[A/a] is
true). Note that this law is absolute and does not change in future
worlds. The heap law specifies the heap relation of the island as a
function of the current population a. For the ∝ proposition to be
well-formed, the heap law H must be delayed, a notion which we
discuss in conjunction with heap relations below.

Closely related to the ∝ proposition is the notion of an island
context L. We use island contexts to keep track of the islands in
the world that we know and care about. In addition to specifying
the law for each island, L associates with each island a population
variable p, as we discussed in Section 3.1.

The modality .P says that P holds “one step later” (but not
necessarily now), a notion we make formal in Section 6. The
modality 2P says that P holds now and in all future worlds.

x.P denotes the relation {(x) |P}, and e ∈ R holds if e belongs
to the relation R. (Here, and throughout, we write foo to denote a
sequence of zero or more foo’s, separated by commas.)

The recursive relation µr.R is useful in defining the logical rela-
tion for recursive types. To be semantically well-founded, we insist
that R must be contractive in r, meaning that it may only mention r
under a . modality. Thus, the apparently circular meaning of µr.R
is really inductive in the step-indices that stratify worlds.

The relation ↑R denotes the lifting of a binary value relation
R to a term relation. Roughly, (e1, e2) ∈ ↑R if e1 and e2, when
evaluated under any heaps h1 and h2 (respectively) that satisfy
the demands of the current world, either both terminate or both

diverge. In the case that they terminate, there must exist some future
world such that the resulting heaps satisfy that future world and the
resulting values are related by R in that future world. This intuitive
description of ↑R leaves out the details of how step-indices play
into the picture, which will become clear when we present the
model in Section 6.

Last among the propositions is H V J , which denotes heap re-
lation entailment. The heap relations denoted by H and J express
relations between the heaps of the two programs we are reasoning
about. Instead of incorporating explicit heap objects into LADR
and reasoning about them directly, we rely on primitives of intu-
itionistic separation logic to express our heap relations. Thus, the
entailment H V J has the usual separation logic interpretation—
i.e., any pair of heaps that satisfy H must also satisfy J .

The points-to relation e ↪→i e′ relates two heaps h1 and h2 if e
is a location in the domain of heap hi, e′ is in Vali, and hi(e) = e′.
This relation is intuitionistic in that it makes no restrictions on heap
h¬i (where ¬i = 3 − i), and does not require that e be the only
location in the domain of hi. The separating conjunction H1 ∗H2

relates h1 and h2 if h1 and h2 can be split into disjoint pieces such
that H1 relates one piece and H2 relates the other.

Disjunction and existential quantification are standard. Finally,
we come to 2P , which embeds the proposition language of our
logic in the heap relation language. 2P is like a pure assertion in
traditional separation logic in that it ignores the heaps entirely. It is
explicitly 2’d to ensure that all heap relations are (by construction)
monotone w.r.t. all forms of world extension. This requirement,
carried over from ADR, ensures that when we grow the population
on one island of a world—a form of depth extension (see the
Introduction)—we do not violate heap properties on other islands.

For general heap relations, there is no restriction on subformulas
of the form 2P . However, for the heap relations appearing in island
heap laws (either in a ∝ proposition or an island context L), we
insist that P be delayed. Semantically, this means that the meaning
of P only depends on what the world looks like “one step later”. As
a syntactic approximation of this semantic criterion, we define P to
be delayed if all non-absolute constructs in it (with the exception
of Termi) appear under a . modality. When we give our model of
LADR, the delayed restriction will enable us to interpret an island
heap law by a semantic heap relation that is indexed by worlds of a
lower step-index. This is critical for the step-stratified construction
of worlds, as we explained in Section 3.2.

The full definition of syntactic well-formedness for all relations
and contexts of LADR is formalized in the online appendix [17].
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HeapAtomn
def
= {(W,h1, h2) |W ∈Worldn ∧ h1, h2 ∈ Heap}

HeapReln
def
= {ψ ⊆ HeapAtomn | ∀(W,h1, h2) ∈ ψ. ∀W ′ wW. (W ′, h1, h2) ∈ ψ}

Islandn
def
= {(CP ,PL,HL) | CP ∈ PL ⊆ P(Termk) ∧HL ∈ P(Termk)→ HeapReln}

Worldn
def
= {(k, d, ς1, ς2, I) | k < n ∧ d ∈ {→,←} ∧ ς1, ς2 ⊆ Loc ∧ I ∈ IslandName

fin→ Islandk}
SemRelk

def
= {Ψ ∈World → P(Termk) | ∀W,W ′ ∈World . W ′ ⊇W ⇒ Ψ(W ′) ⊇ Ψ(W )}

W ′ ⊇W def
= W ′.k ≤W.k ∧ W ′.d = W.d ∧ W ′.ς1 ⊇W.ς1 ∧ W ′.ς2 ⊇W.ς2 ∧ W ′.I ⊇ bW.IcW ′.k

W ′ wW def
= W ′.k ≤W.k ∧ W ′.d = W.d ∧ W ′.ς1 ⊇W.ς1 ∧ W ′.ς2 ⊇W.ς2 ∧ W ′.I w bW.IcW ′.k

I′ w I def
= ∀ι ∈ dom(I). I′(ι).CP ⊇ I(ι).CP ∧ I′(ι).PL = I(ι).PL ∧ I′(ι).HL = I(ι).HL

.W
def
= (W.k − 1,W.d,W.ς1,W.ς2, bW.IcW.k−1)

/W
def
= (W.k + 1,W.d,W.ς1,W.ς2,W.I)

pop(ι)
def
= λW. W.I(ι).CP

bIck
def
= λι.bI(ι)ck

b(CP ,PL,HL)ck
def
= (CP ,PL, bHLck)

bHLck
def
= λCP .bHL(CP)ck

bψck
def
= {(W,h1, h2) ∈ ψ |W.k < k}

h1, h2 : W
def
= ` h1 ∧ ` h2 ∧ dom(h1) ⊇W.ς1 ∧ dom(h2) ⊇W.ς2 ∧ ∃h′1, h′2. h′1 ⊆ h1 ∧ h′2 ⊆ h2 ∧ h′1, h

′
2 :dom(W.I) W

h1, h2 :ω W
def
= W.k > 0 ⇒ ∃h1

1, . . . , h
n
1 , h

1
2, . . . , h

n
2 . h1 = h1

1 ] · · · ] hn
1 ∧ h2 = h1

2 ] · · · ] hn
2 ∧

ω = {ι1, . . . , ιn} ∧ ∀k ∈ {1, . . . , n}. (.W, hk
1 , h

k
2) ∈W.I(ιk).HL(W.I(ιk).CP)

W ` (h1; e1) ≈ (h2; e2) : Ψ
def
= FL(e1) ⊆W.ς1 ∧ FL(e2) ⊆W.ς2 ∧

(W.d =→ ∧ ∀j < W.k. ∀h′1, e′1. (h1; e1) ⇓j (h′1; e′1)⇒
∃h′2, e′2,W ′. W ′.k = W.k − j ∧W ′ wW ∧ (h2; e2)⇓ (h′2; e′2) ∧ΨW ′(e′1, e

′
2) ∧ h′1, h′2 : W ′) ∨

(W.d =← ∧ ∀j < W.k. ∀h′2, e′2. (h2; e2) ⇓j (h′2; e′2)⇒
∃h′1, e′1,W ′. W ′.k = W.k − j ∧W ′ wW ∧ (h1; e1)⇓ (h′1; e′1) ∧ΨW ′(e′1, e

′
2) ∧ h′1, h′2 : W ′)

Figure 5. Worlds

5. LADR: A Logical Relation for Fµ!

Following Plotkin and Abadi [33], we do not bake in logical re-
lations for Fµ! as primitive notions in LADR, for they are already
expressible directly in terms of existing constructs. Figure 4 defines
a logical relation for Fµ! syntactically in terms of LADR relations.
VJτKρ defines the logical relation on values of type τ , where

ρ maps the free variables of τ to their interpretations as LADR
relations. EJτKρ defines the logical relation for terms, which is just
the lifting (via the primitive ↑ operation) of the one for values. The
definition is inductive on the structure of τ .

For the most part, the definition is straightforward, interpret-
ing each type using the appropriate logical connective according
to the Curry-Howard correspondence. A key property of VJτKρ is
that it is monotone w.r.t. all forms of world extension (formally,
that VJτKρ : Type as defined in Figure 3, under the assumption
that ∀α ∈ dom(ρ). ρ(α) : Type). Thus, in the cases of func-
tion and universal types, the relations are explicitly 2’d to ensure
monotonicity, and in the cases of universal and existential types, we
require the universally or existentially quantified relation variable
r to satisfy r : Type.

Recursive types are interpreted, quite naturally, as recursive
relations. Moreover, by using the recursive relation primitive, we
can define VJµα.τKρ inductively on the type. Due to the syntactic
restriction that the body of a recursive relation be contractive in
the recursive relation variable r, we define roll v1 and roll v2 to be
logically related (at µα.τ ) if v1 and v2 are related (at τ [µα.τ/α])
later. This is typical of a step-indexed model. Intuitively, it makes
sense because it takes one unroll-roll reduction step to reduce the
equivalence of roll v1 and roll v2 to the equivalence of v1 and v2,
so if the latter are related for n steps, the former should be related
for n + 1 steps.

Reference types are interpreted in essentially the way we de-
scribed in Section 3.2. Namely, two locations are related at ref τ if
there exists an island in the world whose heap law asserts that their

contents are related at type τ one step later. (Note: the 2 in front of
the . is only there because .(y1, y2) ∈ VJτKρ is a “normal” propo-
sition, which must therefore be explicitly 2’d in order to appear
inside the heap law.) The population law a ≡ {(x1, x2)} asserts
that the population relation is fixed and equals the singleton rela-
tion relating the two locations. While this is not a very interesting
use of populations, we find it useful as a way of distinguishing the
island for one location from another (see the proof of compatibility
for == in the online appendix [17]).

6. LADR: Model
Our model for LADR is based closely on the ADR model. We
interpret normal LADR relations into semantic relations, which
are simply relations on closed terms (possibly with free locations)
indexed by possible worlds. (Absolute relations may be interpreted
straightforwardly as ordinary relations with no world index, and we
give such an interpretation in the online appendix [17].)

6.1 Worlds
Possible worlds are defined in Figure 5, along with some auxiliary
notation. A world is a 5-tuple (k, d, ς1, ς2, I) consisting of a step
level k, a direction parameter d, sets of valid locations ς1 and ς2
(for the left and right terms, respectively), and an island map I.
The direction parameter d, ranging over {→,←}, describes which
direction of logical approximation we are proving (i.e., that the
term on the left approximates the one on the right or vice versa).
By building the direction in as a parameter of the world, we ensure
that proofs of logical relatedness establish logical equivalence.

An island map associates island names with islands of the form
(CP ,PL,HL), where CP is the current population of the island,
PL is the population law, and HL is the heap law. Formally, the
current population is just a term relation (of arbitrary arity), PL is
a set of such populations, and HL is a function from populations
to heap relations. Heap relations, in turn are indexed by worlds, but
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JP KδWe

JP KδWe
def
= > if W.k = 0. Otherwise:

J>KδW def
= >

J⊥KδW def
= ⊥

JP ∧QKδW def
= JP KδW ∧ JQKδW

JP ∨QKδW def
= JP KδW ∨ JQKδW

JP ⇒ QKδW def
= ∀W ′ ⊇W. JP KδW ′ ⇒ JQKδW ′

J∀X .P KδW def
= ∀γ ∈ JX K . JγP KδW

J∃X .P KδW def
= ∃γ ∈ JX K . JγP KδW

J∀R.P KδW def
= ∀δ′ ∈ JRK . JP K(δ, δ′)W

J∃R.P KδW def
= ∃δ′ ∈ JRK . JP K(δ, δ′)W

J∝ a.(B,H)KδW def
= ∃ι. Jp∝ a.(B,H)Kδ′W{ι}

where p 6∈ dom(δ) ∧ δ′ = δ, p7→pop(ι)

J2P KδW def
= ∀W ′ wW. JP KδW ′

J.P KδW def
= JP Kδ(.W )

Je ∈ RKδW def
= JRKδWe

JaKδWe
def
= δ(a)e

JrKδWe
def
= δ(r)We

Jx.P KδWe
def
= JP [e/x]KδW

Jµr.RKδWe
def
= JR[µr.R/r]KδWe

J↑RKδW (e1, e2)
def
= ∀W ′ ⊇W. ∀h1, h2 : W ′.

W ′ ` (h1; e1) ≈ (h2; e2) : JRKδ
JTermiKδWe

def
= FL(e) ⊆W.ςi

JH V JKδWe
def
= ∀W ′ ⊇W. ∀h1, h2.

JHKδW ′(h1, h2)⇒ JJKδW ′(h1, h2)

JP1, . . . , PnKδW def
=

Vn
i=1 JPiKδW

JHKδW (h1, h2)

JHKδW (h1, h2)
def
= > if W.k = 0. Otherwise:

Je1 ↪→i e2KδW (h1, h2)
def
= Je1 ∈ ValiKδW ∧ Je2 ∈ ValiKδW ∧

hi(e1) = e2

JH1 ∗H2KδW (h1, h2)
def
= ∃h1

1, h
2
1, h

1
2, h

2
2. ∀i.

hi = h1
i ] h2

i ∧ JHiKδW (hi
1, h

i
2)

JH1 ∨H2KδW (h1, h2)
def
= JH1KδW (h1, h2) ∨ JH2KδW (h1, h2)

J∃X .HKδW (h1, h2)
def
= ∃γ ∈ JX K . JγHKδW (h1, h2)

J2P KδW (h1, h2)
def
= J2P KδW

JLKδWω
JLKδWω

def
= > if W.k = 0. Otherwise:

J·KδWω
def
= ω = ∅

JL, p∝ a.(B,H)KδWω
def
= ∃ι ∈ ω. δ(p) = pop(ι) ∧

JLKδW (ω − {ι}) ∧
W.I(ι).PL = {CP | ||B||(δ, a 7→CP)} ∧
∀CP ∈W.I(ι).PL. ∀W ′ w .W.

(W ′, h1, h2) ∈W.I(ι).HL(CP) ⇐⇒
JHK(δ, a 7→CP)(/W ′)(h1, h2)

Figure 6. Model (Part 1): Relations and Islands

at one step level lower than the world containing them—thus, the
construction of worlds can be stratified by the step level n. When
we write W , we draw it from

S
n∈N Worldn, and similarly for the

other metavariables. Note also that we require heap relations to be
monotone by construction, for the reasons explained in Section 4.

For convenience, we use dot notation (e.g., W.I(ι).HL) to
project components out of worlds in the obvious way.

Unlike in ADR, worlds as we have defined them here do not
make disjointness of islands manifest. Instead of explicitly includ-
ing in each island the set of locations “owned” by the island, as
the ADR model does, our worlds just record the global sets of lo-
cations in ς1 and ς2. However, heap separation is enforced in the
definition of heap satisfaction: a pair of heaps satisfy a world, writ-
ten h1, h2 : W , if they contain sub-heaps that can be split up into
pairs of disjoint parts, each of which is related by the heap relation
of one particular island.

Two configurations are related in a given world W , written
W ` (h1; e1) ≈ (h2; e2) : Ψ, if the termination of one in j < W.k
“serious” steps implies the termination of the other, with the re-
sulting heaps and values related by the semantic relation Ψ in some
(W.k − j)-level future world of W . Which configuration’s termi-
nation implies the other’s is determined by the direction param-
eter d. By “serious” steps, we mean either unroll-roll reductions
or “impure” steps that inspect or modify the heap. Also, note that
(h1; e1) ⇓j (h′1; e

′
1) implies that e′1 cannot reduce further, but not

necessarily that e′1 is a value—it could be a stuck term.

6.2 Interpretation of Relations
Figure 6 shows the interpretation of LADR relations. As a relation
R may have free relation variables R, its interpretation JRK is
parameterized by a relational interpretation δ, which maps the
variables inR to semantic relations of the appropriate kind.

Following LSLR, we define JRKδW by a two-level induction,
first on the step level W.k, and second on the size of R (where,
crucially, .P is considered to have constant size). At step level 0,
all propositions are trivially true because “Time’s up!” Otherwise,
in terms of ensuring that the induction metric is obeyed, the only
interesting cases are for .P and µr.R. The . modality is interpreted
by “going down one step”, i.e., moving to the world one step later
(abbreviated .W , as defined in Figure 5). Thus, even though .P
has constant size and thus P is potentially larger, the world in
which we interpret P has a lower step-index, so the induction
metric gets smaller. A recursive relation µr.R is defined to be
equivalent to its expansion R[µr.R/r]; assuming (as we do) that
µr.R is well-formed, that means R must be contractive in r, and
thus the expansion is actually smaller in size than µr.R.

As explained in the Introduction, all propositions are required to
be monotone with respect to time and width extension (written ⊇,
which is defined in Figure 5). This property is stipulated formally
in the definition of semantic relations (see SemRelk, also defined
in Figure 5). Consequently, the interpretations of both implication
(⇒) and entailment (V) quantify over worlds W ′ that extend the
current world W in time and/or width. In contrast, the truth of
2’d propositions must be preserved under arbitrary world extension
(written w).

The interpretation of ↑R relates e1 and e2 if, for any heaps h1

and h2 satisfying the current world W , (h1; e1) and (h2; e2) are
related configurations under W .

Besides ↑R, the other interesting world-dependent proposition
is∝ a.(B, H). It holds if the world contains an island named ι that
correctly models the singleton island context p ∝ a.(B, H). (For
more details on the model of island contexts, see below.)

Heap relations H are interpreted in mostly the standard separa-
tion logic way, except that we require values occurring in a refer-
ence assignment e1 ↪→i e2 to be well-formed in the current world,
i.e., contain only locations from the respective heap W.ςi.

Last but not least, Figure 6 gives the semantic interpretation of
island contexts L. We say that the islands ω in world W correctly
model island context L (written JLKδWω) if there is a bijection
between ω and L such that the semantic population and heap laws
of each island in ω faithfully model the syntactic population and
heap laws of the corresponding entry in L.
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There are two particularly interesting points here. First, note
that, for each island described by L, we only require its heap law
H to match the corresponding heap law of W when attention is
restricted to the relatedness of heaps at strictly future worlds of W
(i.e., at worlds W ′ w .W ). Intuitively, this makes sense because
(1) given the step-stratified construction of worlds, the actual heap
law of W can only possibly contain heap atoms (W ′, h1, h2),
where W ′.k < W.k, and (2) since W is our “starting” world, we
can safely ignore worlds that are not future worlds of it. (Putting
these observations together, W ′.k < W.k∧W ′ wW is equivalent
to W ′ w .W .) Moreover, restricting attention to strictly future
worlds seems to be critical in proving the soundness of some of the
proof rules that we present in Section 7, such as the ∝-INTRO rule.

Second, note the mysterious appearance of / W ′ in the model-
ing of the heap law H in JLK. The / operator is defined formally in
Figure 5, and we pronounce it as “earlier” because it lifts the world
W ′ up one level instead of pushing it down one level (as . does).
What is going on here? Basically, as we explained in Section 3.2,
the issue is that we model the syntactic heap law H—which is pre-
sumed to hold true at the “current” step level, i.e., W.k—using a
semantic heap law (W.I(ι).HL) that is indexed by worlds with
step levels strictly less than W.k. This results in an unavoidable
“off-by-one” error, for which the / operator then serves as a patch.

To understand how our use of / works, consider the follow-
ing situation, variations of which arise in proving the soundness of
several key LADR proof rules (such as ↑-IMPURE and ISL-UPD,
described in Section 7). Suppose the “current” world under con-
sideration is W , and suppose we are given the assumption that
heaps h1 and h2 satisfy the heap law of some island ι in W (i.e.,
h1, h2 :{ι} W ). Suppose further that the corresponding island in
the island context L has syntactic heap law H .

Given these assumptions, we expect it to be the case that
JHKδW (h1, h2) for some appropriate δ—i.e., that h1 and h2 sat-
isfy H under world W—and we rely on this fact at various points,
but it is something we need to show. Our assumption h1, h2 :{ι} W
tells us that (.W, h1, h2) ∈W.I(ι).HL(W.I(ι).CP), i.e., that h1

and h2 satisfy W ’s actual heap law under world .W . According to
the model of JLK (instantiating W ′ with .W ), we therefore know
that h1 and h2 satisfy H under world / .W , and from this we must
derive that they satisfy H under W .

If H were an arbitrary heap relation, JHKδW and JHKδ(/ .W )
would not necessarily coincide. However, since H came from the
island context L, we know that it must be delayed (cf. Section 4),
which ensures that its meaning JHKδW can only depend on what
W looks like at one lower step level, i.e., on what .W looks like.
Thus, since .W = . / .W , the proof is complete. Note that it is
not the case that JHKδW coincides with JHKδ(.W )—more things
are related at .W because its step level is lower than W ’s—so the
use of / here is critical in inflating .W to the same step level as W .

6.3 Judgments
The LADR inference rules concern three judgments. They all use a
context C of the form (X ;R;L;P), where X binds type and term
variables, R binds relation variables, L associates (but does not
bind) population variables with their related island definitions, and
P specifies a set of hypotheses. As with worlds, we use dot notation
to project out the component contexts of a C.

The interpretation of contexts is shown in Figure 7. A combined
context (X ;R;L;P) is interpreted by all tuples (γ, δ, W, ω1, ω2),
where: (1) γ and δ are closing instantiations for X and R, (2)
the names of W ’s islands can be split into two sets, ω1 and ω2,
such that ω1 corresponds to the islands specified in L, and (3) the
hypotheses in P hold under δ and W . Note that the interpretation
of island contexts enforces that δ will map each population variable
in L to pop(ι), the population relation for some island ι in ω1.

JX K def
= {γ | dom(γ) = X ∧ FV(rng(γ)) = ∅}

JRK def
= {δ | dom(δ) = R∧ ∀a ∈ R. δa ∈ P(Termarity(a)) ∧

∀r ∈ R. δr ∈ SemRelarity(r)}
JX ;R;L;PK def

= {(γ, δ,W, ω1, ω2) | γ ∈ JX K ∧ δ ∈ JRK ∧
JγLKδWω1 ∧ JγPKδW ∧
dom(W.I) = ω1 ] ω2}

C ` P def
= ∀(γ, δ,W, ω1, ω2) ∈ JCK . JγP KδW

C ` {H} e1 ≈ e2 {R}
def
=

∀(γ, δ,W, ω1, ω2) ∈ JCK . W.k > 0 ⇒ ∀h1, h2, h1
1, h

2
1, h

1
2, h

2
2.

` hi ∧ dom(hi) ⊇W.ςi ∧ hi = h1
i ] h2

i ∧
JγHKδW (h1

1, h
1
2) ∧ h2

1, h
2
2 :ω2 W

⇒W ` (h1; γe1) ≈ (h2; γe2) : JγRKδ

C ` {H} e C′
7−→i e

′ {H′} def
=

C′ = x, x ∈ Vali ∧ ∀(γ, δ,W, ω1, ω2) ∈ JCK . ∀h1, h2.

JγHKδW (h1, h2) ∧ W.k > 0 ⇒ ∀l /∈ dom(hi) ∪W.ςi.

∃ĥ1, ĥ2. ĥ¬i = h¬i ∧ (hi; γe)
l7−→1 (ĥi; γe

′[l/x]) ∧
JγH′[l/x]Kδ(W [ςi := W.ςi ] {l}])(ĥ1, ĥ2)

Figure 7. Model (Part 2): Contexts and Judgments

The main judgment of LADR is of the form C ` P , which states
that P is true for any interpretation of C. If one is only reasoning
about pure terms, one never needs to leave this judgment.

Equivalence of impure terms can be derived by going through
the separation judgment C ` {H} e1 ≈ e2 {R}. Essentially, it
states that, for any heaps h1 and h2 satisfying the precondition H ,
the configurations (h1; e1) and (h2; e2) are related in the current
world, producing values related by R. But it is actually a bit more
complicated than that, as the judgment also bakes in a framing con-
dition. The condition says that h1 and h2 can be split into disjoint
pieces, such that the first piece satisfies H , and the second piece
satisfies the heap laws of the islands ω2. This rather subtle framing
condition is necessary in order to ensure that all the “action” that
takes place in the separation judgment only affects the piece of the
heap governed by the laws in C.L, which in turn is important in
proving sound the critical ISL-UPD rule (Section 7).

The auxiliary small-step judgment C ` {H} e
C′
7−→i e′ {H ′}

states that under precondition H , e reduces to e′ in one “serious”
step (cf. Section 6.1), implying postcondition H ′. If the step is an
allocation, then C′ introduces a new variable x (which is a bound
variable of the judgment) that stands for the resulting fresh location
in e′ and H ′; otherwise C′ is empty. The i specifies which program
is being executed, the one on the left (i = 1) or the one on the right
(i = 2). For the other program (¬i = 3− i), the heap is guaranteed
not to change. Note that, in the model of the judgment, we quantify
over all possible choices of a fresh location, and then extend the
world W with that location.

7. LADR: Proof Rules
Figures 8 and 9 present the most important proof rules of LADR.
Soundness proofs for all these rules are given in the appendix [17].
We omit introduction and elimination rules for the standard logical
connectives here in the interest of space. We also omit standard
axioms about atomic propositions (like Val, Constτb , e1 ;k e2,
etc.), which can be proven easily in the model. Throughout, we
make the implicit assumption that the terms appearing in rules are
in Term1 or Term2, as appropriate, under the given context C.
These assumptions can be built into the rules straightforwardly, at
the expense of cluttering the presentation.

8



C ` e1 = e2 C ` J [e1/x]

C ` J [e2/x]
REPLACE

C ` J
C,X ,R,P ` J WEAKEN

C ` P C, P ` J
C ` J

CUT

C ` P C ` P
C,L ` P L-WEAKEN

C ` P
C ` .P

.-MONO
/ C ` P
C ` .P .-WEAKEN

C, .P ` P
C ` P LÖB

C ` .(P ⇒ Q)

C ` .P ⇒ .Q

C ` .(P ∧Q)

C ` .P ∧ .Q
C ` .(P ∨Q)

C ` .P ∨ .Q
C ` .∀X .P
C ` ∀X ..P

C ` .∀R.P
C ` ∀R..P

C ` .∃X .P
C ` ∃X ..P

C ` .∃R.P
C ` ∃R..P

†C ` P
C ` 2P

2-INTRO
C ` A
C ` 2A

2-INTRO-ABS
C ` e ∈ Termi

C ` 2(e ∈ Termi)
2-INTRO-TERM

C ` 2P
C ` P 2-ELIM

C ` .2P
C ` 2.P

.2-SWAP

C ` e ∈ x.P
C ` P [e/x]

ELEM
C ` e ∈ µr.R

C ` e ∈ R[µr.R/r]
ELEM-µ

p∝ a.(B,H) ∈ C.L C ` e ∈ p
C ` 2(e ∈ p)

POP-MONO
p∝ a.(B,H) ∈ C.L C ` A ≡ p

C ` B[A/a]
POP-LAW

p∝ a.(B,H) ∈ C.L
C ` ∃a.a ≡ p

POP-SNAP

p∝ a.(B′, H′) ∈ C.L
C ` ∀a.B ≡ B′

C ` 2(∀a.B ⇒ (H WV H′))

C ` ∝ a.(B,H)
∝-INTRO

C ` ∝ a.(B,H) C, p, p∝ a.(B,H) ` P
∀p′ ∝ a.(B′, H′) ∈ C.L : C, ∀a.B ≡ B′,2(∀a.B ⇒ (H WV H′)) ` P

C ` P ∝-ELIM

C ` 2P
C ` H V 2P

C ` H V 2P

C ` H V H ∗ 2P

C,2P ` H V H′

C ` 2P ∗H V H′ C ` e1 ↪→i e2 V 2(e1 ∈ Loc ∧ e1 ∈ Vali ∧ e2 ∈ Vali)

C ` (e′1, e
′
2) ∈ ↑R

C ` e1 ;∗ e′1 C ` e2 ;∗ e′2

C ` (e1, e2) ∈ ↑R
↑-EXPAND

C ` (e′1, e
′
2) ∈ ↑R

C ` e′1 ;0 e1 C ` e′2 ;0 e2

C ` (e1, e2) ∈ ↑R
↑-REDUCE

/ C ` (e′1, e
′
2) ∈ ↑R

C ` e1 ;1 e′1 C ` e2 ;1 e′2

C ` (e1, e2) ∈ ↑R
↑-UNROLL

C ` (e1, e2) ∈ R C ` R : VRel

C ` (e1, e2) ∈ ↑R
↑-RETURN

C ` (e1, e2) ∈ ↑S †C, x1, x2, (x1, x2) ∈ S ` (E1[x1], E2[x2]) ∈ ↑R
C ` (E1[e1], E2[e2]) ∈ ↑R

↑-BIND

C.L = p∝ a.(B,H) C, a, p ≡ a ` {∗H} e1 ≈ e2 {R}
C ` (e1, e2) ∈ ↑R

↑-IMPURE

Figure 8. Key Inference Rules of LADR (Part 1): Structural Rules and Main Judgment

The first three rules are standard laws for replacement of equal
terms, weakening, and cut. We write J to range over all three judg-
ments introduced in Section 6.3. Note that the general weakening
rule does not allow the addition of islands. Weakening of the island
context is allowed for the main judgment (rule L-WEAKEN), be-
cause we always allow the world to contain additional islands not
mentioned in C.L. Yet weakening does not hold in the separation
judgment, where the island laws also represent implicit postcondi-
tions, which induce proof obligations in rule ISL-UPD (see below).

The rules .-MONO to LÖB are taken directly out of LSLR.
Rule .-MONO says that, due to time monotonicity, any proposi-
tion true now is still true later. Rule .-WEAKEN allows proving a
proposition true one step later by proving it in a context where all
later assumptions have been “moved to the present” (notation / C,
defined in Figure 3). This rule is actually derivable from .-MONO
and the law of distributivity of . over⇒ (given in the next line).

Like in LSLR, the LÖB rule provides a simple induction princi-
ple over step levels: if, under the assumption that P is true later, we
can prove P now, then by induction P is true now. See Section 9.3
for an example of its use.

The next couple of rules allow introduction of the 2-modality
for different kinds of monotone propositions. According to the 2-
INTRO rule, P is monotone if we can prove it without any po-
tentially non-monotone assumption (†C removes all but 2’d as-
sumptions from the context, cf. Figure 3). Absolute propositions
are always monotone, and so is well-formedness of terms (rules
2-INTRO-ABS and 2-INTRO-TERM). Conversely, a 2’d proposi-
tion is of course true in the current world (2-ELIM). Finally, rule
.2-SWAP asserts that the two modalities commute.

The rules ELEM and ELEM-µ define inhabitation of relations. A
recursive relation is equivalent to its expansion.

The next rules deal with populations. Because populations are
required to grow monotonically in the model, membership in one
is a monotone property (rule POP-MONO—see Section 9.2 for a
good example of its use). Furthermore, if A represents the current
population of an island, then the island’s population law B holds
for it (rule POP-LAW). Rule POP-SNAP allows us to take an absolute
“snapshot” a of the current population of an island (intuitively, we
can do this because the population of an island remains constant
under time and width extension of its surrounding world).

An island proposition ∝ a.(B, H) can only be introduced if an
island with population and heap laws equivalent to B and H exists
in the context (rule ∝-INTRO). Conversely, eliminating an island
proposition (rule ∝-ELIM) requires a case distinction: either (1) it
talks about an island p that we do not know yet, in which case we
just add p to the island context, or (2) it refers to one of the islands
in L, in which case said island must have population and heap laws
equivalent to B and H .

The next four rules in Figure 8 are but a small sample of the
many rules for heap relation entailments H V J . Many more rules
appear in the appendix [17], and most of those are completely stan-
dard rules from intuitionistic separation logic. The rules we show
here are interesting in that they involve the atomic propositions of
the form 2P . The first rule says that any 2P that we can prove in
the main judgment may serve as the conclusion of an entailment.
The second rule says that if 2P is true, it is true of the empty heap.
The third rule enables 2P to be shifted between the context and the
antecedent of the entailment. The fourth rule establishes that when
e1 points to e2, they must both be values, and e1 must be a location.
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C ` {H} e1 ≈ e2 {R}

C ` B[A/a]
C, p, p∝ a.(B,H′), p ≡ A ` {H} e1 ≈ e2 {R}

C ` {H} e1 ≈ e2 {R}
ISL-NEW

C.L = p∝ a.(B,H) C `
V
p ⊆ A C `

V
B[A/a]

C′ = †C, p ≡ A C′ ` H V ∗H[A/a] C′ ` (e1, e2) ∈ ↑R
C ` {H} e1 ≈ e2 {R}

ISL-UPD

C ` {H} e′1 ≈ e′2 {R} C ` e1 ;∗ e′1 C ` e2 ;∗ e′2

C ` {H} e1 ≈ e2 {R}
EXPAND

C ` {H} e′1 ≈ e′2 {R} C ` e′1 ;0 e1 C ` e′2 ;0 e2

C ` {H} e1 ≈ e2 {R}
REDUCE

C ` {H} e1
C17−→1 e′1 {H′} C, C1 ` {H′} e′1 ≈ e2 {R}
C ` {H} e1 ≈ e2 {R}

STEP-L
C ` {H} e2

C27−→2 e′2 {H′} C, C2 ` {H′} e1 ≈ e′2 {R}
C ` {H} e1 ≈ e2 {R}

STEP-R

C ` {H1} e1
C17−→1 e′1 {H′

1} C ` {H2} e2
C27−→2 e′2 {H′

2} / C, C1, C2 ` {H′
1 ∗H′

2} e′1 ≈ e′2 {R}
C ` {H1 ∗H2} e1 ≈ e2 {R}

STEP-LR

C ` H V H′ C ` {H′} e1 ≈ e2 {R}
C ` {H} e1 ≈ e2 {R}

SEP-ENTAIL
C ` 2P C ` {H ∗ 2P} e1 ≈ e2 {R}

C ` {H} e1 ≈ e2 {R}
SEP-CUT

C,2P ` {H} e1 ≈ e2 {R}
C ` {H ∗ 2P} e1 ≈ e2 {R}

2-SHIFT
C ` {H1} e1 ≈ e2 {R} C ` {H2} e1 ≈ e2 {R}

C ` {H1 ∨H2} e1 ≈ e2 {R}
SEP-∨

C,X ` {H} e1 ≈ e2 {R}
C ` {∃X .H} e1 ≈ e2 {R}

SEP-∃

C ` {H} e C′
7−→i e

′ {H′}

C ` e ;1 e′

C ` {H} e 7−→i e
′ {H}

UNROLL

C ` e ∈ Vali C ` A ⊆ Vali C′ = x, x ∈ Vali

C ` {H} E[ref e]
C′
7−→i E[x] {H ∗ x ↪→i e ∗ 2(x /∈ A)}

ALLOC

C ` H V e1 ↪→i e2

C ` {H} E[!e1] 7−→i E[e2] {H}
DEREF

C ` e2 ∈ Vali

C ` {H ∗ e1 ↪→i e
′
2} E[e1 := e2] 7−→i E[〈〉] {H ∗ e1 ↪→i e2}

ASSIGN

Figure 9. Key Inference Rules of LADR (Part 2): Separation and Small-Step Judgments

The remaining rules of the main judgment deal with relatedness
of terms. The first three (↑-EXPAND, ↑-REDUCE, and ↑-UNROLL)
consider closure of relatedness under pure conversion, and are
again straight out of LSLR. As they are essentially pure versions
of the separation judgment rules EXPAND, REDUCE, and STEP-LR,
we refer the reader to the discussion of those rules below.

Rules ↑-RETURN and ↑-BIND can be regarded as monadic rules
for reasoning about computations in a sequentialized manner. The
former represents the base case: if two values are related by R,
then they are also related by ↑R. The latter is useful when we have
terms in evaluation position (e1 and e2 in the rule) that are not
syntactically reducible to values, but that we know belong to ↑S
for some S. The rule allows us to invent variables to represent their
values, and to assume the variables are related by S in a future
world. See Sections 8 and 9.2 for examples where ↑-BIND is key.

In order to reason about terms involving impure reduction steps,
rule ↑-IMPURE enables us to switch to the separation judgment. The
heap laws from all islands in the island context are converted (via
separating conjunction) into a precondition, under which we pro-
ceed to prove the terms related. Since the heap laws may mention
the current population, we also pick fresh absolute a’s to represent
the current populations of all the islands and instantiate the heap
laws with those a’s.

This leads us to the separation judgment, defined in Figure 9.
Rule ISL-NEW allows us to extend the world (widthwise) with a
new island. It requires us to pick an initial population A and prove
that it obeys the population law. Two terms can then be proven
related under the assumption that the new island exists and that
A is its (current) population.

Rule ISL-UPD allows us to prove a separation judgment by
switching back to the main judgment, at which point we have the
opportunity to advance to a future world by extending the popu-
lation on any island. For each island, the respective new popula-

tion A must be shown to be a superset of the current one, and it
must obey the corresponding population law. The world is then up-
dated with the new populations, by removing all assumptions about
the previous world from the context (courtesy of the †C notation),
and adding the knowledge about the new populations. In this new
world, the heap laws of all known islands (joined again by a sepa-
rating conjunction) must be entailed by the precondition H .

The main purpose of the separation judgment is to enable us to
prove the equivalence of terms by symbolically stepping through
their evaluations. Rules EXPAND, STEP-L, and STEP-R describe
closure of the separation judgment under expansion. REDUCE de-
scribes closure under reduction, as long as the reduction takes zero
“serious” steps. Rule STEP-LR is another rule for closure under ex-
pansion, but since both sides expand with a “serious” step, we can
drop the .’s from any .P assumptions in the context. See Sections 8
and 9.3 for examples of how this is critically useful.

All three STEP rules use the auxiliary stepping judgment to per-
form the actual step and update the heap assertion H accordingly.
The only slightly unusual rule of this judgment is ALLOC: it pro-
vides a means of picking a set A of well-formed values with re-
spect to which the variable x (representing the new location) is
assumed to be fresh in the postcondition. This is reminiscent of
Aydemir et al.’s “cofinite quantification” style of reasoning about
fresh identifiers in mechanized metatheory [5], for although A is
not necessarily finite, its absoluteness suffices to show it contains
finitely many locations. The freshness postcondition is useful, e.g.,
when reasoning about equality of locations. See the name generator
example in Section 4.1 of our online appendix [17] for details.

The remaining rules of the separation judgment are straightfor-
ward: SEP-ENTAIL is one half of the rule of consequence. (We have
not needed the other half, but it would be easy to prove.) With rule
SEP-CUT, derivable monotone propositions can be “cut into” the
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heap precondition, and with rule 2-SHIFT they can be shifted back.
The two remaining rules are standard separation logic rules.

8. LADR: Soundness of the Logical Relation
We now present our main results concerning soundness of the
logical relation with respect to contextual equivalence. The first
step is to define a logical equivalence judgment:

Definition 8.1 (Logical Equivalence Judgment)
Given Γ;Σ ` e1 : τ and Γ;Σ ` e2 : τ , with Γ = α, x : τ and
Σ = l : σ, define

Γ;Σ ` e1 ≈log e2 : τ
def
= X ;R;L;P ` (γ1e1, γ2e2) ∈ EJτKρ

where
γi = α 7→αi, x7→xi X = α1, α2, x1, x2

R = r, p ρ = α 7→ r

L = p ∝ a.(a ≡ {(l, l)},∃y1, y2. l ↪→1 y1 ∗ l ↪→2 y2 ∗
2.(y1, y2) ∈ VJσK)

P = r : Type, (x1, x2) ∈ VJτKρ, l ∈ Val1, l ∈ Val2

The basic building blocks of the soundness proof are the com-
patibility lemmas [30], which state that the logical relation is
closed under each of the language’s constructs. Together, they yield
the fundamental property of the logical relation and the fact that
the logical relation is a congruence wrt. language contexts C. In
contrast to ADR, our proofs for compatibility lemmas are much
shorter, because we can express them, at a much higher level of ab-
straction, in terms of the proof rules we have given in Section 7. As
an example, we show the compatibility lemma for dereferencing,
which was multiple pages long in ADR. See the online appendix
for the proofs of the other state-related compatibility lemmas [17].

Lemma 8.2 (Compatibility: Dereference)
If Γ;Σ ` e1 ≈log e2 : ref τ , then Γ;Σ ` !e1 ≈log !e2 : τ .

Proof: Unfolding the definition of ≈log , this boils down to de-
riving C0 ` (e1, e2) ∈ EJref τKρ ⇒ (!e1, !e2) ∈ EJτKρ for
some C0 in which e1 ∈ Term1 and e2 ∈ Term2. Using rule
L-WEAKEN, we may assume that C0.L = ∅. Starting with rule
↑-BIND, we need to show C1 ` (!x1, !x2) ∈ EJτKρ, where
C1 = †C0, x1, x2, (x1, x2) ∈ VJref τKρ. The latter tells us that
∝ a.(B, H), where H = ∃y1, y2. x1 ↪→1 y1 ∗ x2 ↪→2 y2 ∗
2.(y1, y2) ∈ VJτKρ. With the help of rule ∝-ELIM and the fact
that our L is empty, we can extend C1 to C2 = C1, p, p∝ a.(B, H)
and then use rule ↑-IMPURE to enter the separation judgment. Here
we are required to show {H} !x1 ≈ !x2 {VJτKρ}. We first extend
C2 with y1, y2, .2(y1, y2) ∈ VJτKρ (using rules SEP-∃, 2-SHIFT,
and .2-SWAP). By combining rules DEREF and STEP-LR, the proof
goal reduces to {H} y1 ≈ y2 {VJτKρ}, but under a context where
. is removed from the assumption concerning the relatedness of
y1 and y2. We now switch back to the regular judgment using rule
ISL-UPD, without actually updating any island. Consequently, we
need to show (y1, y2) ∈ ↑VJτKρ, which follows from the assump-
tion in the context and rules ↑-RETURN and 2-ELIM. �

Theorem 8.3 (Fundamental Property)
If Γ;Σ ` e : τ , then Γ;Σ ` e ≈log e : τ .

Theorem 8.4 (Congruence)
If Γ;Σ ` e1 ≈log e2 : τ and ` C : (Γ; Σ; τ)  (Γ′; Σ′; τ ′), then
Γ′; Σ′ ` C[e1] ≈log C[e2] : τ ′.

Given the Congruence Theorem, the only missing piece in the
soundness proof is adequacy of the logical relation [30], i.e., the
fact that if two closed terms are logically related, then they co-
terminate under any (well-formed) heap. For this lemma we need
to reason directly in the model, and the proof follows the one in
ADR; details are in the online appendix [17].

Lemma 8.5 (Adequacy)
If ·; Σ ` e1 ≈log e2 : τ and ` h : Σ, then (h; e1)⇓ iff (h; e2)⇓.

Theorem 8.6 (Soundness w.r.t. Contextual Equivalence)
If Γ;Σ ` e1 ≈log e2 : τ , then Γ;Σ ` e1 ≈ctx e2 : τ .

9. Examples
In this section, we demonstrate how to use LADR to prove some
interesting contextual equivalences. We can use LADR to prove all
the examples in ADR, save for one which we discuss in Section 10.

9.1 Twin Abstraction
Recall the “twin abstraction” example from Section 3.1:

τ = ∃α, β. (unit→ α)× (unit→ β)× (α× β → bool)
C = let x = ref 0 in

pack int, int, 〈λ .++x, λ .++x, λy.[•]〉 as τ
e1 = C[fst y = snd y]
e2 = C[false]

To prove e1 and e2 equivalent, we want to show ` (e1, e2) ∈ EJτK,
or, by ↑-IMPURE, ` {2>} e1 ≈ e2 {VJτK}. By rules STEP-LR,
ALLOC and EXPAND, we need to show

{x1 ↪→1 0 ∗ x2 ↪→2 0} e′1[x1/x] ≈ e′2[x2/x] {VJτK}
where e′1 and e′2 are the bodies of the respective let expressions and
we omit the pure heap assertions produced by ALLOC.

Using rule ISL-NEW we introduce an island p ∝ a.(B, H),
whose population is a finite mapping of the symbols generated so
far (which will be the same on both sides) to the respective abstract
type they inhabit, i.e., 1 for α and 2 for β:

B = ∃n. funmap(a, n, 2)
H = ∃n. x1 ↪→1 n ∗ x2 ↪→2 n ∗ 2maxdom(a, n)

The population law B states that the population a is the relational
map of a function from {1, . . . , n} to {1, 2}, for some n. The heap
law H then verifies that the states of x1 and x2 always are in sync
with the maximum n in the domain of a. (The absolute predicates,
funmap and maxdom, are easy to define in LADR.) Given A = ∅
for the initial population, it is easy to verify that B[A/a] holds.

Both e′1[x1/x] and e′2[x2/x] are values, so we want to apply
rule ISL-UPD immediately to get back into the pure judgment,
i.e., prove (e′1[x1/x], e′2[x2/x]) ∈ VJτK under the island context
p ∝ a.(B, H). We instantiate that rule with A = ∅ as before, and
so the only new thing to prove is x1 ↪→1 0 ∗ x2 ↪→2 0V H[∅/a],
which involves the straightforward proof of 2maxdom(∅, 0).

Now, we unroll the definition of VJτK = VJ∃α.∃β. K and pick

Rα = (x1 ∈ Constint, x2 ∈ Constint). x1 = x2 ∧ (x1, 1) ∈ p
Rβ = (x1 ∈ Constint, x2 ∈ Constint). x1 = x2 ∧ (x1, 2) ∈ p

We need to prove Rα : Type and Rβ : Type. Both proper-
ties follow straightforwardly from rule POP-MONO. Now let ρ =
α 7→Rα, β 7→Rβ . By definition of VJ × K ρ, we have to show:

1. C ` (λ .++x1, λ .++x2) ∈ VJunit→ αKρ
2. C ` (λ .++x1, λ .++x2) ∈ VJunit→ βKρ
3. C ` (λy.fst y = snd y, λy.false) ∈ VJα× β → boolKρ

where C = x1, x2; p; p∝ a.(B, H); 2(x1 ∈ Val1),2(x2 ∈ Val2).
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For (1), we unroll the definition of VJ → K ρ, and apply the
introduction rules for 2, ∀ and⇒, producing the goal

((λ .++x1) y1, (λ .++x2) y2) ∈ ↑VJαKρ = Rα

with (y1, y2) ∈ VJunitKρ in the assumptions. By ↑-EXPAND and
↑-IMPURE we get the name a ≡ p for the current population. By
∃-INTRO, we have to show:

{x1 ↪→1 n ∗ x2 ↪→2 n ∗ 2maxdom(a, n)} ++x1 ≈ ++x2 {Rα}
We can step through both computations simultaneously using rule
STEP-LR, record n + 1 ;0 n′ in the context (for a freshly bound
variable n′), and reach:

{x1 ↪→1 n′ ∗ x2 ↪→2 n′ ∗ 2maxdom(a, n)} n′ ≈ n′ {Rα}
Now that the new symbols have been generated, we update

the island with the new population A = a ∪ {(n′, 1)}, using
rule ISL-UPD. To do so, we first have to show p ⊆ A, which
is easy given p ≡ a. Then we have to show that the population
law still holds, i.e., ∃n′′. funmap(A, n′′, 2). This is easy to derive
by picking n′′ = n′ and using the assumption maxdom(a, n).
Likewise, we have to prove that the final heap assertion entails the
heap law H[A/a] under the assumption p ≡ A. Choosing n′ for
the existential variable, this reduces to showing maxdom(A, n′),
which is easy.

The final step in this part is to show (n′, 1) ∈ ↑Rα. Unfolding
the definition, this follows directly from rule ↑-RETURN, given that
the updated population p ≡ A = a ∪ {(n′, 1)}.

For part (2) we proceed analogously, the only difference being
that we choose A = a ∪ {(n′, 2)} for the new population.

Part (3) is relatively straightforward now. We start as before,
yielding the goal

((λy.fst y = snd y) y1, (λy.false) y2) ∈ ↑VJboolK

where (y1, y2) ∈ VJα× βKρ. We can unfold the definition
of VJα× βKρ and eliminate the top-level existential bindings,
thus producing the assumptions y1=〈y′1, y′′1 〉, y2=〈y′2, y′′2 〉 and
(y′1, y

′
2) ∈ Rα, (y′′1 , y′′2 ) ∈ Rβ for some fresh y′1, y

′
2, y

′′
1 , y′′2 . Given

this, y1 can be replaced by the pair 〈y′1, y′′1 〉, and by ↑-EXPAND we
are left to prove (y′1 = y′′1 , false) ∈ ↑VJboolK. At this point, the
proof essentially boils down to the absolute proposition

∀a, y′, y′′. B ⇒ (y′, 1) ∈ a⇒ (y′′, 2) ∈ a⇒ y′ 6= y′′

which is straightforward to prove given the definition of B. We can
then conclude that y′1 = y′′1 reduces to false, and we are done.

9.2 Irreversible State Change
Consider Pitts and Stark’s “awkward” example [31], two equivalent
functions of type (unit→ unit)→ int:

e1 = let x = ref 0 in λf.(x := 1; f 〈〉; !x)
e2 = λf.(f 〈〉; 1)

In e1, the local reference x can be in only two states: either 0, before
the function f has been called for the first time, or 1 after that event.
However, once it has changed to 1, it will never change back, not
even through reentrant calls inside the callback f .

In the proof we can represent the two states by an island p with

B = a ⊆ {1}
H = (2a ≡ ∅ ∗ x ↪→1 0) ∨ (2a ≡ {1} ∗ x ↪→1 1)

Note that we encode the state 0 by the empty set, because popula-
tions can only grow monotonically.

The proof first proceeds somewhat similarly to the previous one,
until we reach the point of showing the function bodies equivalent:

{H} (x := 1; f1 〈〉; !x) ≈ (f2 〈〉; 1) {VJintK}
where (f1, f2) ∈ VJunit→ unitK. Here, we apply rule SEP-∨.

In either case, we step forward the computations until the calls
to f1 and f2—both cases will now have the heap assertion x ↪→1 1.
At this point, we apply ISL-UPD to update the population to {1} and
get back into the pure judgment. We can now prove 2(1 ∈ p) using
rule POP-MONO, and cut that into the context. Then, we use ↑-BIND
to bind the results of the calls to variables y1, y2, and proceed with
proving ((y1; !x), (y2; 1)) ∈ EJintK. We apply ↑-IMPURE to return
into the separation judgment and finish the proof by again applying
SEP-∨. In the first subcase, the new hypotheses a ≡ ∅ and a ≡ p
will yield a contradiction with 2(1 ∈ p), which remained as an
assumption in the context by virtue of its being 2’d. The other
subcase tells !x ; 1 right away.

9.3 Landin’s Knot
We want to prove that Landin’s knot—the construction of a fixed-
point using backpatching—works. That is, we want to prove the
equivalence of the following two expressions of type τ1 → τ2:

e1 = let z = ref (λx.⊥) in (z := (λx.let f = !z in e); !z)
e2 = fix f(x). e

where fix is a standard call-by-value fixed-point operator, which
can be defined in our language as follows:

fix f(x). e = λx.(unroll v) v x
where v = roll λf ′.(λf.λx.e) (λx.(unroll f ′) f ′ x)

We need to show ` (e1, e2) ∈ EJτ1 → τ2K.
Let F be the function that z ends up being assigned. There are

three interesting points in the proof:

1. To record the fact that z will contain F forever after the assign-
ment, we introduce an island with the heap law H = z ↪→1 F
(the populations are not relevant for this proof).

2. After that, we invoke the LÖB rule to prove that F and e2 (the
results of evaluating e1 and e2) are related in VJτ1 → τ2K under
the inductive assumption .(F, e2) ∈ VJτ1 → τ2K.

3. Further into the proof, we reach a point where we have to show

{z ↪→1 F} (let f = !z in e[y1/x]) ≈ e2(y2) {VJτ2K}

for some (y1, y2) ∈ VJτ1K. At this point, both computations are
ready to make a “serious” step, so we can apply rule STEP-LR,
using DEREF on the left and UNROLL on the right, to reduce the
goal to proving

{z ↪→1 F} e[F/f ][y1/x] ≈ e[e2/f ][y2/x] {VJτ2K}

under a /’d context, i.e., where the .-operator has been removed
from the LÖB-inductive assumption relating F and e2.

Finally, we can apply the rules ISL-UPD and ↑-REDUCE (back-
wards) to β-expand the two terms to (λf.λx.e)(F )(y1) and
(λf.λx.e)(e2)(y2). The result then follows from the Fundamen-
tal Property (which says that λf.λx.e is related to itself), together
with the relatedness of (F, e2) and (y1, y2).

10. Conclusion and Related Work
In this paper, we have presented a relational modal logic, LADR,
for reasoning about program equivalence in a language with higher
types, type abstraction, recursive types, and (local) higher-order
state. To our knowledge, this is the first logic for reasoning syntac-
tically about contextual equivalence of programs in such a rich lan-
guage. The model of the logic is based closely on the step-indexed
Kripke logical relation developed recently by Ahmed, Dreyer, and
Rossberg [2], but by using the high-level proof rules of the logic,
we can abstract away many of the messy details of the ADR model.
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Comparison to ADR Before relating LADR to ADR in detail, let
us begin by noting that there is a huge amount of prior work on
using logical relations to reason about contextual equivalence in
higher-order languages with some subset of recursive types, exis-
tential types, and local state (e.g., [1, 8, 10, 23, 30, 31, 37]). There
has also been significant work on using bisimulations for the same
purpose (e.g., [21, 22, 39, 41, 43]). We refer the reader to [2] for
detailed comparisons between the ADR model and previous ap-
proaches. More recently, Sumii has developed an environmental
bisimulation method that handles all the examples in ADR and
more [42], although some of them involve tricky proofs that reason
explicitly about induction on program contexts. We are very in-
terested in exploring the connection between step-indexed Kripke
logical relations and environmental bisimulations, and hope that
the present work may serve as a stepping stone to a unified, logical
understanding of both methods.

It is difficult to precisely compare the expressiveness of LADR
with the original ADR model, or indeed to precisely compare the
expressiveness of any two methods developed in this area (includ-
ing all the aforementioned logical relations and bisimulation tech-
niques). It is usually impossible to pinpoint exactly what class of
equivalences can be proven in any model/logic, partly because it
depends on what one means by “can be proven”. For instance, many
of the bisimulation techniques are touted as being “complete” with
respect to contextual equivalence, but completeness per se gives no
indication of whether a technique is effective at proving anything.
(After all, contextual equivalence is complete with respect to itself!)
For this reason, the literature tends to be very example-driven, with
each paper attempting to handle all or most of the previously pro-
posed examples, as well as some new class of examples.

The ADR paper, to which some of the present authors con-
tributed, presented a whole range of new and interesting examples
(concerning stateful ADTs), precisely in order to better suggest
what the ADR model was capable (and incapable) of. But ADR,
being state-of-the-art, is also capable of handling the other stan-
dard examples from the literature, such as the Meyer-Sieber exam-
ples [24]. For the present paper, our aim was for LADR to handle
all the examples from the ADR paper (that ADR can handle) with
the exception of one (described below), and for the LADR proofs to
be much shorter and cleaner (which they are). Moreover, like ADR,
LADR also handles the other well-known examples from the liter-
ature (e.g., those in [24, 31]).

The one example that the ADR paper shows how to prove,
but that LADR (we believe) cannot, is the “callback with lock”
example, based on the reentrant callback example of Banerjee and
Naumann [6]. The ADR proof for that example is, one might say,
rather hacky—it “messes with the steps” in order to fake a very
poor man’s temporal logic. It is therefore not expressible in our
logic, which treats step-indices in a more abstract way. As the
authors of ADR note, the proof was included in the paper primarily
because it was surprising that the model was capable of handling
the example at all. However, the proof is quite inelegant, and rather
than develop a method for expressing the ADR proof for “callback
with lock” more abstractly, we are actively working on developing
an altogether different, cleaner proof for it.

Our model of LADR is very similar to the ADR model. The
primary characteristics of the ADR model (namely, the treatment
of populations and the use of step-indexing to stratify the worlds)
are essentially identical in both models. The differences between
the models are minor ones aimed at simplifying unnecessary or
overcomplicated aspects of the ADR model.

For example, the ADR model enforced “separation” of islands
in worlds by attaching to each island a store typing that explicitly
listed the set of memory locations governed by that island. We
instead define the heap-world satisfaction relation (h1, h2 : W in

Figure 5) separation-logic-style, i.e., there must be some way of
splitting up the heaps so that each disjoint pair of heaps satisfies
a corresponding island. We adopted this approach here because it
seems to simplify the model and permits “ownership transfer” of
locations between islands (although we are not yet sure how to
exploit this feature).

Another difference is that the ADR model was constructed from
syntactically well-typed terms, whereas our present model does not
make that restriction. We diverged from ADR on this point as an
experiment, in order to see if the syntactic typing restriction in
ADR was really necessary or was just cluttering up proofs. The
short answer is that, for the purpose of the ADR proofs, it is
not necessary. That said, we know of some other examples where
syntactic typing is a useful assumption (e.g., so that one can make
use of “syntactic” properties like “canonical forms”). In any case, it
seems straightforward to define a variant of LADR that is restricted
to well-typed terms, if so desired.

Other Related Work Honsell, Mason, Smith, and Talcott [20] and
Yoshida, Honda, and Berger [45] have proposed logics for reason-
ing about higher-order programs with local state, the former equa-
tional and the latter Hoare-style. Neither deals with type abstraction
or the kinds of reasoning afforded by ADR’s populations.

Separation logic, a highly influential variant of Hoare logic for
reasoning about programs with pointers, was originally developed
by Reynolds, O’Hearn, and others for low-level languages (see the
survey in [38]). However, in recent years, variants of separation
logic have also been developed for modular verification of OO
languages [14, 28], as well as for languages with higher types
and/or higher-order state [11, 26, 36]. All of these approaches,
however, essentially only handle strong memory updates, not ML-
style reference types, which enjoy stronger invariants.

A key idea in separation logic is the frame rule, which al-
lows one to use separating conjunction to “frame-in” additional re-
sources to the pre- and post-conditions of Hoare triples. O’Hearn,
Yang, and Reynolds [27] showed how to extend the original (first-
order) frame rule to second-order, and subsequently Birkedal, Torp-
Smith, and Yang [11] discovered how to prove higher-order frame
rules sound by means of a possible-world semantics for specifica-
tions. Their approach is to effectively bake the frame rule into the
interpretation of Hoare triples. In LADR, the model of our “sepa-
ration” judgment involves a similar baking-in of the frame rule.

Birkedal and Yang [12] devised a relational model of separation
logic, for a language with higher types but flat store. Their model
was explicitly intended as a first step towards a logic for stateful
ADTs. However, they only developed the model, not a correspond-
ing logic for syntactic reasoning. They proposed, however, that a
logic for syntactic reasoning might employ ideas from Yang’s ear-
lier work on relational separation logic [44], as we have done here.

Concurrently with our work, Hobor, Dockins, and Appel [19]
have investigated a more abstract description of step-indexed mod-
els by means of certain section-retraction pairs. Their squash and
unsquash functions seem to be at least superficially similar to our .
and / operations on worlds, respectively, so it would be interesting
to see if their approach can be usefully applied to give a simpler
account of the (L)ADR models. We believe there are some non-
trivial challenges because propositions in the (L)ADR models are
required to be monotone with respect to time and width extension;
on the face of it, Hobor et al.’s setup does not accommodate such
monotonicity requirements directly.

Also concurrently with our work, Pilkiewicz and Pottier [29]
propose a way to reason about monotonic state changes in an
expressive capability type system. The basic capability type system
(borrowed from Charguéraud and Pottier [13]) incorporates strong
references, whose types can be updated via assignment; capabilities
are used to restrict sharing of such strong references for the purpose
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of ensuring soundness. The idea of Pilkiewicz and Pottier is that it
is sound for multiple clients to share references if the state evolves
in a monotonic way and clients only rely on such monotonic state
changes. Monotonic state changes are described using so-called
fates and laws, which are related to our use of populations and
laws. Using this idea of monotonic state change, and by applying
a generalized version of Pottier’s anti-frame rule for hiding local
state [34, 35], Pilkiewicz and Pottier are able to give types that
express the behavior of the example programs considered in ADR.
Pilkiewicz and Pottier’s type system cannot, however, be used to
prove contextual equivalence of programs, and it has not yet been
proven sound. Recently, Schwinghammer et al. have proven the
anti-frame rule sound in a separation-logic setting [40], and there
is hope that this result can be extended to a soundness proof of
Pilkiewicz and Pottier’s system, but there are also some technical
difficulties ahead (e.g., modeling the generalized anti-frame rule).

We view logical relations and separation logic as largely com-
plementary tools, and the design of LADR is (we think) particularly
interesting because it shows how both approaches can cooperate ef-
fectively within one logic. Admittedly, our use of separation logic is
fairly limited, but this is deliberate on our part (as a way of simpli-
fying matters at first). We are keen to explore ways of generalizing
LADR to support richer forms of separation logic reasoning, and to
explore further the connection with higher-order separation logic.
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